
November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

International Journal of Modern Physics C
c© World Scientific Publishing Company

Mining Connected Global and Local Dense SubGraphs for BigData

Bo Wu and Haiying Shen

Department of Electrical and Computer Engineering, Clemson University
Clemson, South Carolina 29634, USA

bwu2(shenh)@clemson.edu

The problem of discovering connected dense subgraphs of natural graphs is important in

data analysis. Discovering dense subgraphs that do not contain denser subgraphs or are
not contained in denser subgraphs (called significant dense subgraphs) is also critical for

wide-ranging applications. In spite of many works on discovering dense subgraphs, there
are no algorithms that can guarantee the connectivity of the returned subgraphs or dis-

cover significant dense subgraphs. Hence, in this paper, we define two subgraph discovery

problems to discover connected and significant dense subgraphs, propose polynomial-time
algorithms and theoretically prove their validity. We also propose an algorithm to further

improve the time and space efficiency of our basic algorithm for discovering significant

dense subgraphs in big data by taking advantage of the unique features of large natural
graphs. In the experiments, we use massive natural graphs to evaluate our algorithms in

comparison with previous algorithms. The experimental results show the effectiveness of

our algorithms for the two problems and their efficiency. This work is also the first that
reveals the physical significance of significant dense subgraphs in natural graphs from

different domains.

Keywords: Densest subgraph; Complex network; Natural graph.

PACS Nos.: 11.25.Hf, 123.1K

1. INTRODUCTION

The natural graph is one of the most important data structures in this big data era.

The emergence of many networks, such as the World Wide Web, the social networks,

big molecules, and gene network, has raised the importance of analyzing natural

graphs. Natural graphs have many interesting and important features. A challenging

problem in natural graph analysis is defining and identifying communities, which

plays a significant role in many applications such as social network community

mining, computational biology, link spam detection and network design [1,7,13,16,

20, 25]. In spite of many definitions of community [14, 24, 27], the definition of the

dense subgraph performs well in various applications [7,13,16,20,25] and it is much

more easier to implement when the datasets become large.

The dense subgraph problem has been widely studied in theoretical works [2,

3, 6, 11, 12, 14, 19, 25] and application works [7, 13, 20, 25]. These works are focused

on different subproblems such as discovering the densest subgraph [3, 6, 14, 19], the

k-densest subgraph [11], and the densest subgraph with the restriction of containing

1

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

2

 Expected Unexpected

(a) With the restriction

Expected Unexpected

(b) Without restrictions
Fig. 1. Connectivity problem in previous algorithms

a specific subset and of distance [25].

Among the densest subgraph discovery methods [3,6,14,25], the precise method

in [25] finds the densest subgraph with the restriction of containing a specific vertex

subset, and the precise method in [14] and approximate method in [3, 6] find the

densest subgraph with no restrictions. However, the precise algorithm in [25] and the

approximate algorithms in [3, 6] cannot guarantee the connectivity of the returned

subgraphs, which however is always required in community detection in many ap-

plications (e.g., community discovery in social network, function module discovery

in gene structure). Figure 8 shows possible returned subgraphs when discovering

the densest subgraph containing a specific vertex subset using the algorithm in [25].

Figure 7 shows possible identified densest subgraph without restrictions using the

algorithms in [3, 6]. We see that the returned subgraphs may contain multiple iso-

lated connected subgraphs, since they try to find a denser subgraph. Though the

precise method [14] precisely solves the densest subgraph problem in polynomial

time, which can return connected subgraphs, it lacks the capability of handling large

datasets due to very high memory and time consumption. Therefore, a computation

efficient method for identifying connected densest subgraph is highly desired.

When it comes to find multiple dense subgraphs in a graph, previous algo-

rithms [13, 25] just find all subgraphs with density higher than a threshold. These

algorithms neglect the connectivity problem of the detected subgraphs. Further,

considering the graph structure and the real applications such as community de-

tecting [7] and gene pattern annotation [25], a denser subgraph may be not a good

choice since it contains or is contained in a denser subgraph, while a sparser sub-

graph may be a good choice since it does not contains or is not contained in a denser

subgraph. However, there are no previous works that can identify dense subgraphs

which do not contain denser subgraphs or are contained in denser subgraphs (called

significant dense subgraphs).

In this paper, we aim to handle the aforementioned problems existing in previous

dense subgraph identification algorithms. Specifically, we define two new subprob-

lems and summarize our contribution below.

• We define the Discovering local connected densest subgraph problem (LCDS)

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

3

Fig. 2. Graph construction

Fig. 3. TCPM graph partition

which is to discover the connected densest subgraph with the restriction of

containing a specific vertex subset. Then we propose a precise algorithm

to solve it in polynomial time and prove the algorithm’s effectiveness and

design rationality.

• We define the Discovering global significant dense subgraphs problem (GS-

DS), which is to discover all significant dense subgraphs and also are con-

nected. Then we propose an algorithm to solve it in polynomial time and

prove the algorithm’s effectiveness and design rationality.

• We first invent the Two connected partitions min-cut (TCPM) technique

which can discover the LCDSs and GSDSs. TCPM technique is different

from min-cut max-flow technique used in discovering the original densest

subgraph [14].

• Based on the feature of natural graphs, we provide an improved GSDS

algorithm to reduce the time and space complexity of our basic GSDS

algorithm, which can easily handle data with GB-level size in one PC.

• We conduct extensive experiments on massive natural graphs. The results

show the effectiveness and efficiency of our algorithms in comparison with

previous algorithms, and the enhanced efficiency of our improved GSDS

algorithm.

The rest of this paper is organized as follows. Section 7 presents the related

work. Section 2 introduces the basic concepts and techniques. Section 3 defines

the LCDS problem and proposes a polynomial-time solution. Section 4 defines the

GSDS problem and proposes a basic polynomial-time algorithm and an improved

algorithm. Section 5 presents experimental results and analyzes the structure of the

natural graphs. Section 8 summarizes the paper with remarks on our future works.

2. Preliminaries

We first introduce the concepts used in this paper. Let G = (V,E) be an undirected

graph. For a subset S ⊆ V , the induced edge set is defined as E(S) = E ∩ S2 and

the induced degree of a node i ∈ S is defined as degS(i) = |{j|(i, j) ∈ E(S)}|. In

the remaining parts of this paper, we use vertex subset S to denote graph GS =

(S,E(S)) for short sometimes.

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

4

Definition 1. Density of an undirected graph [3]: Let G = (V,E) be an

undirected graph. Given S ⊆ V , its density ρ(S) is defined as ρ(S) = |E(S)|
|S| . The

maximum density ρ∗(S) of the graph is ρ∗(S) = max
S⊆V
{ρ(S)}.

The densest subgraph is the subgraph that has the maximum density.

Definition 2. Capacity of an edge [26]: Let N = (V,E) be a network (directed

graph) with s and t being the source and the sink of N respectively. The capacity

of an edge (u, v) is denoted by c(u, v). It represents the maximum amount of flow

that can pass through an edge.

Definition 3. Capacity of a cut [26]: A cut C = (V1, V2) is a partition of V ,

where V1∪V2 = V , and V1∩V2 = ∅. The cut-set of C is the set {(u, v) ∈ E|u ∈ V1, v ∈
V2}. The capacity of a cut C = (V1, V2) is defined by c(V1, V2) =

∑
(u,v)∈V1×V2

c(u, v).

It represents the sum of the capacities of the edges connecting two partitions V1
and V2 (i.e., cut-set).

Definition 4. Min-cut max-flow (min-cut in short) problem [26]: This prob-

lem is to minimize c(V1, V2), that is, to determine V1 and V2 such that the capacity

of cut c(V1, V2) is minimal.

When all the capacities of the edges in the graph are nonnegative, the min-cut

problem can be solved in polynomial time [26]. However, if there are negative edges,

the min-cut problem is an NP-hard problem [23]. The min-cut problem with non-

negative capacities was applied to solve the original densest subgraph problem [14].

In order to solve the LCDS problem in this paper, we first propose a two connected

partitions min-cut problem as follows:

Definition 5. Two connected partitions min-cut problem (TCPM): This

problem is to minimize c(V1, V2), that is, to determine V1 and V2 such that the ca-

pacity of the cut is minimal, and meanwhile vertex subsets V1 and V2 are connected,

respectively.

This problem can be solved in polynomial time using a simple min-cut algo-

rithm [26], since a simple min-cut algorithm just considers the min-cut of the two

connected partitions and negative capacity does not influence the validity of the

algorithm.

3. Discovering the LCDS

In this section, we define the LCDS problem and propose a polynomial-time solution.

Definition 6. Local connected densest subgraph of a vertex subset L:

Given a connected graph G = (V,E), and a certain vertex subset L, where L ⊆ V .

We call GL = (L+, E(L+)) a local connected densest subgraph (LCDS) of L, if and

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

5

only if that subgraph GL is connected, L ⊆ L+, and there are no such connected

subgraph GS = (S,E(S)) that satisfies ρ(S) > ρ(L+), and L ⊆ S.

3.1. A Polynomial-time Algorithm

According to the interesting relationship between LCDS and TCPM problems shown

later, the LCDS problem can be solved by trial and error in polynomial time. Given

an estimated density of the LCDS of L (denoted by g), we can construct a specific

graph (denoted by N). The LCDS can be reduced from one partition of TCPM of

N if the estimation is right. Otherwise, we can judge whether g is too big or small

based on the result whether the capacity of TCPM (denoted by cmin) is bigger than

a certain value. Therefore, we can adjust the lower and upper bounds of the density

of the LCDS of L (denoted by lmin and umin, respectively) and give g a new value

based on lmin and umin. In this way, we apply a binary searching scheme to reach

the “just right” g.

Algorithm 1: Algorithm for discovering LCDS of L

1: Given: G = (V,E);
2: lmin ← 0, umin ← n;

3: while (lmin − umin) ≥ 1
n(n−1)

do

g ← lmin+umin
2

;

Construct N = (VN , E(VN));

Find TCPM (V1 ∪ s, V2);
Calculate cmin;

if cmin ≥ a|L| then
umin ← g

end

if cmin < a|L| then
lmin ← g

end

end

4: return subgraph of G induced by V1;

We first set lmin = 0 and umin = n where n = |V |. In the step of graph

construction, given a g, we convert the graph G = (V,E) to graph N = (VN , EN)

as shown in Figure 2. We add a vertex s to the set of vertices of V , allocate each

edge of E by a capacity of 1, connect every vertex i of V \L to vertex s by an edge

of capacity (2g − di), and connect every vertex i of L to vertex s by an edge of

capacity (a+ 2g − di), where a is a negative constant smaller than the twice of the

sum of other negative edge capacities in the graph N and di is the degree of vertex

i of G. More formally,

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

6

VN = V ∪ {s}
EN = {(i, j)|{i, j} ∈ E(V)} ∪ {(i, s)|i ∈ L}

∪{(i, s)|i ∈ V \L}
cij = 1 {i, j} ∈ E(V)

csi = 2g − di i ∈ V \L
cit = a+ 2g − di i ∈ V

Then, we find a TCPM (V1∪ s, V2) of N . In Theorem 1, we find the relationship

between cmin and the density bounds of the LCDS. Therefore, we can adjust g

based on cmin. If cmin ≥ a|L|, we update umin with the current value of g; if

cmin < a|L|, we update lminwith the current value of g. When the stop condition

((lmin− umin) < 1
n(n−1) which is proved in Theorem 2) is satisfied, we get the final

LCDS of L from V2. Otherwise, we update g by g = (lmin + umin)/2 using the

binary searching scheme, re-construct N based on the updated g, and repeat the

above process until the stop condition is satisfied.

In the following, we analyze the validity of this algorithm including the determi-

nation of lower and upper bounds of the density of the LCDS of L, the determination

of the stop condition, the connectivity of the discovered LCDS of L and its time

complexity.

3.2. Proving the Validity of the Algorithm

3.2.1. Relationship between Capacity and Density Bounds of the LCDS

In order to continually narrow the scope of the density of the LCDS, we need a

method to determine the lower and upper bounds based on the constructed TCP-

M in each loop in Algorithm 1. Therefore, we prove the relationship between the

possible capacity of the constructed TCPM and the bounds of the LCDS below.

Lemma 1. Suppose (V1 ∪ {s}, V2) is a TCPM of the above constructed graph N =

(VN , EN), then vertex subset L ⊂ V2.

Proof. We know that any cut c(V1, V2) where L ⊂ V2 has capacity cL ≤ (a|L|− a
2),

since a is a negative constant smaller than the twice of the sum of other negative

edge capacities in the graph N . Suppose there is a cut with capacity cL− which a

vertex subset L− where L− ⊂ L and L− ⊂ V1, then cL− > a|L\L−| + a
2 . Also, we

know (a|L\L−|+ a
2) ≥ (a|L|− a

2), since L− 6= ∅. Therefore, cL− > cL. Hence, vertex

subset L ⊂ V2 for TCPM (V1 ∪ {s}, V2).

Theorem 1. Suppose c(V1 ∪ s, V2) is a TCPM of the graph N = (VN , EN), which

has capacity cmin and L+ is the LCDS of L, then the g parameter in Algorithm 1

satisfies g ≥ ρ(L+) if and only if cmin ≥ a|L|, and it satisfies g ≤ ρ(L+) if and only

if cmin ≤ a|L|.

Proof. As we can see from Figure 3, the capacity of the TCPM equals:

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

7

cmin =
∑

i∈V1,j∈V2

cij

=
∑
j∈V2

csj +
∑

i∈V1,j∈V2

cij

We know that vertex s is only connected to vertices in vertex subset L from

the definition of TCPM. Also based on Lemma 1, we know that L ⊂ V2. Hence,∑
j∈V1

csj = 0. Therefore, we have:

cmin =
∑
i∈L

(a+ 2g − di) +
∑

i∈V2\L
(2g − di) +

∑
i∈V1,j∈V2

1

= a|L|+ 2|V2|(g −

∑
i∈V2

di −
∑

i∈V1,j∈V2

1

2|V2|
)

= a|L|+ 2|V2|(g − ρ(V2))

Since |V2| ≥ |L| and |L| > 0, 2|V2|(g− ρ(V2)) = 0 if and only if g = ρ(V2). Suppose

g ≤ ρ(L+), then we can find a cut c(V1, V2) where ρ(V2) ≥ g. Such a cut can lead to

2|V2|(g−ρ(V2)) ≤ 0. Hence, capacity cmin ≤ a|L|. Conversely, suppose cmin ≤ a|L|,
then, 2|V2|(g − ρ(V2)) ≤ 0. Then g ≤ ρ(V2). We know ρ(V2) ≤ ρ(L+) from the

definition. Therefore, g ≤ ρ(L+).

Suppose g ≥ ρ(L+), then we know ρ(V1) ≤ ρ(L+) from the definition. Hence,

2|V2|(g − ρ(V2)) ≥ 0. Therefore the TCPM cmin ≥ a|L|. Conversely, suppose the

TCPM cmin ≥ a|L|. Then, 2|V2|(g − ρ(V2)) ≥ 0. Then, g 6= ρ(V2). Also ρ(V2) ≤
ρ(L+). Therefore, g ≤ ρ(L+).

Based on the above property, we design the binary searching scheme of the

algorithm.

3.2.2. Determining the Stop Condition of the Algorithm

Lemma 2. Suppose there is a connected graph N = (VN , EN), two vertex subsets

S1 and S2 where S1, S2 ⊂ VN . Then, |ρ(S1)− ρ(S2)| ≥ 1
n(n−1) , where n = |VN |.

Proof. Suppose the number of the edges in subgraph G1 = (S1, E(S1)) and G2 =

(S2, E(S2)) is m1 and m2, respectively. Then, ρ(S1) = m1

|S1| , and ρ(S2) = m2

|S2| . We

have:

|ρ(S1)− ρ(S2)| = |
m1

|S1|
−
m2

|S2|
|

=
|m1|S2| −m2|S1||

|S1||S2|

Since ρ(S1) 6= ρ(S2), we can divide the above equation to three conditions: i)

|S1| > |S2|,m1 ≤ m2; ii) |S1| > |S2|,m1 ≥ m2; and iii) |S1| = |S2|,m1 ≤ m2.

In case i), |S1|·|S2| ≤ 1
n(n−1) and m1|S2| −m2|S1| ≥ m1. Then, we have |ρ(S1)−

ρ(S2)| = m1

n(n−1) . Hence, |ρ(S1) − ρ(S2)| ≥ 1
n(n−1) . Similarly, in case ii), |ρ(S1) −

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

8

ρ(S2)| ≥ 1
n(n−1) . In case iii), |S1| < n since ρ(S1) 6= ρ(S2). Therefore, |ρ(S1) −

ρ(S2)| ≥ 1
(n−1)2 . In all the three conditions, |ρ(S1)− ρ(S2)| ≥ 1

n(n−1) .

Theorem 2. Suppose |umin − lmin| < 1
n(n−1) , then we can ensure that the graph

with density bigger than lmin is the LCDS solution.

Proof. Based on Lemma 2, we know we can guarantee that there is only one

subgraph with a density bigger than lmin if |umin − lmin| < 1
n(n−1) . Then, proof

completes.

3.2.3. Connectivity Guarantee of the LCDS of L

Theorem 3. Suppose (V1 ∪ s, V2) is a TCPM of the graph N = (VN , EN), then

vertex subset V2 is connected.

Proof. V2 is one partition of the TCPM. Therefore, we know that V2 is connected

from the definition of the TCPM problem.

Theorem 3 indicates that the LCDS of L discovered by Algorithm 1 is connected.

3.2.4. Time Complexity

Previous studies have proved that TCPM problem can be solved in polynomial

time [26]. In the experiment, we apply a simple min-cut algorithm [18] with time

complexityO(|V ||E|+|V |2log|V |). Also, the stop condition can be met inO(log|VN |)
times of estimations (the time complexity of binary search) and each estimation

requires one TCPM computation. Then, the total time complexity of the LCDS

discovery algorithm is O(|V ||E|log|V |+ |V |2log2|V |).

4. Discovering the GSDSs

In this section, we define the GSDS problem, and propose a polynomial-time solu-

tion.

Definition 7. Global significant dense subgraph: Given a connected graph

G = (V,E), and a connected subgraph GS = (S,E(S)) where S ⊂ V . GS is a

GSDS if and only if there are no such connected subgraph GS+ = (S+, E(S+)) that

satisfies ρ(S+) > ρ(S) and S ⊂ S+, and also there are no such connected subgraph

GS− = (S−, E(S−)) that satisfies ρ(S−) > ρ(S) and S− ⊂ S.

4.1. A Basic Polynomial-time Algorithm

Based on the definition, the idea of this basic algorithm is to find candidates, which

do not contain denser subgraphs, and then check whether they are contained in

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

9

denser subgraphs to get the final results. This algorithm checks GSDSs based on

the following three rules. First, the densest subgraph is a GSDS. Second, GSDSs

are disjointed from each other. Third, if a candidate subgraph is the LCDS of itself

and does not contain denser subgraphs, then it is a GSDS. Accordingly, we reduce

the GSDS problem of G to a series of computations of discovering the densest

subgraph and the LCDS problems, which can be solved by the algorithm in [14]

and Algorithm 1, respectively.

Algorithm 2 presents the pseudocode of this basic polynomial-time algorithm.

In step 1 (block 3 - 4), we find the densest subgraph G1 = (V1, E(V1)) of G,

and add G1 to GSDS list Dlist. In step 2 (block 6), we find the densest subgraph

G2 = (V2, E(V2)) from the remaining graph G\G1. For subgraph G2, there are

no denser subgraphs inside G2 based on the definition of the densest subgraph.

However, to check whether there are denser subgraphs containing G2, we find LCDS

G2L = (V2L, E(V2L)) of V2. If ρ(V2) ≥ ρ(V2L), then there are no denser subgraphs

contain G2, which we will prove in Theorem 6, and add G2 to Dlist. We continue

this process in the remaining graph of G until the remaining of graph G becomes

empty. It is obvious that the maximum times of the process is |V |.

Algorithm 2: Basic algorithm for discovering GSDSs

1: Given: G = (V,E);
2: G0 = (V0, E0)← G;

3: Find densest subgraph G1 = (V1, E(V1)) of G;

4: Add G1 to Dlist;
5: G← G\G1, i← 2;

6: while G 6= ∅ do
Find Gi = (Vi, E(Vi)) of G;
// Gi = (Vi, E(Vi)) is the densest subgraph of G

Find GiL = (ViL, E(ViL));

// GiL = (ViL, E(ViL)) is the LCDS of Vi of G0

G← G\Gi, i+ +;

if ρ(Vi) ≥ ρ(ViL) then
Add Gi to Dlist;

end

end

7: return Dlist;

4.2. Proving the Validity and Properties of the Algorithm

In this section, we prove the three rules followed in this algorithm by studying the

properties of GSDSs and analyze the time complexity.

4.2.1. Properties of GSDSs

Theorem 4. Suppose G1 = (V1, E(V1)) is the densest subgraph of graph G =

(V,E), then G1 is a GSDS.

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

10

Proof. From the definition of the densest subgraph, we know there are no sub-

graphs of G that are denser than G1. Then, there are no subgraphs that contain

G1 are denser than G1. Also, there are no subgraphs contained in G1 that are more

denser than G1. Therefore, by the definition of the GSDS, G1 is a GSDS.

Theorem 4 supports our first rule.

Theorem 5. Suppose G1 = (V1, E(V1)) and G2 = (V2, E(V2)) are two GSDSs of

graph G = (V,E), then we have V1 ∩ V2 = ∅.

Proof. We prove it by contradiction. Suppose V1∩V2 6= ∅, then we have a connected

subgraph G12 = ((V1 ∪ V2), E(V1 ∪ V2)). Then we calculate the density ρ(V1 ∪ V2)

as follows:

ρ(V1 ∪ V2) =
E(V1 ∪ V2)

|V1 ∪ V2|

Let Vb = V1 ∩ V2. Then we have:

ρ(V1 ∪ V2) =
ρ(V1)|V1|+ ρ(V2)|V2| − ρ(Vb)|Vb|

|V1|+ |V2| − |Vb|

Since G1 and G2 are GSDSs, we have ρ(V1) > ρ(Vb) and ρ(V2) > ρ(Vb). Suppose

ρ(V1) ≥ ρ(V2), then we have:

ρ(V1 ∪ V2) >
ρ(V2)|V1|+ ρ(V2)|V2| − ρ(V2)|Vb|

|V1|+ |V2| − |Vb|
= ρ(V2)

Therefore,G2 is not a GSDS from the definition. It contradicts with the assumption.

Therefore, we must have V1 ∩ V2 = ∅.

Theorem 5 supports our second rule, which guarantees that we can find all the

GSDSs.

Theorem 6. Suppose G1
∗ = (V1

∗, E(V1
∗)) is the densest subgraph of part of the

graph G, then G1
∗ is the GSDS of G, if and only if G1

∗ is the LCDS of V1
∗ of G.

Proof. Firstly, we prove that G1
∗ is the GSDS if G1

∗ is the LCDS of V1
∗ of G. From

the definition of the LCDS, we know there are no subgraph G0
∗ = (V0

∗, E(V0
∗))

where V1
∗ ⊂ V0∗ and ρ(V0

∗) > ρ(V1
∗) . Also, from the densest subgraph definition,

we know there are no subgraph G0
∗ = (V0

∗, E(V0
∗)) where V0

∗ ⊂ V1∗ and ρ(V0
∗) >

ρ(V1
∗). Therefore, G1

∗ is the LCDS of V1
∗ of G. Secondly, we prove that G1

∗ is the

GSDS only if G1
∗ is the LCDS of V1

∗ in G by contradiction. Suppose G1
∗ is not

LCDS of V1
∗ in G, then there is a subgraph G0

∗ = (V0
∗, E(V0

∗)) where V1
∗ ⊂ V0

∗

and ρ(V0
∗) > ρ(V1

∗). Then G1
∗ is not a GSDS by the definition. Therefore, the

condition that G1
∗ is the LCDS of V1

∗ of G is the necessary condition for that G1
∗

is a GSDS.

Theorem 6 supports our third rule.

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

11

4.2.2. Time Complexity

In order to discover the densest subgraph, we choose the push-relabel algorithm with

dynamic trees [9]. The time complexity of this algorithm is O(|V ||E|log(|V |2/|E|)).
For the TCPM problem, we choose a simple min-cut algorithm [26]. The time com-

plexity of this algorithm is O(|V ||E| + |V |2log|V |). Therefore, the total time com-

plexity for computing one LCDS is O(|V ||E|log(|V |2/|E|)+|V ||E|+|V |2log|V |). The

total time complexity for computing one GSDS is O(|V |2|E|log(|V |2/|E|)log|V | +
|V |2|E| + |V |3log|V |). For natural graphs, the time complexity is approximate-

ly O(V 2Elog2V), since natural graphs are usually sparse graphs, which makes

|V | ≈ |E|.
Even though the basic GSDS algorithm can solve the problem in polynomial

time, a time complexity of O(V 2Elog2V) is still too high for large datasets especially

in this big data era. To reduce its time complexity, we propose an improved GSDS

algorithm below.

4.3. An Improved Algorithm for Large Datasets

It is well-known that the natural graphs usually follow a power-law degree distribu-

tion [4]. For graphs with such a feature, most of the vertices have low probabilities

to be in the GSDSs, since they have very low degrees. Therefore, the basic idea of

this improved algorithm is trying to reduce the initial size of the dataset by deleting

the vertices with very low degrees. The detailed process is presented in Algorith-

m 3. For a given G = (V,E), we first delete all the vertices, which have degrees

equal or smaller than the maximum density of remaining graph during the deleting

process (blocks 1-3) streamingly. Then, in addition to the same process as the basic

algorithm, we delete the neighbors of the vertices of each densest subgraph found

in the remaining graph (blocks 5-10). Block 11 returns the results. In the following,

we prove the correctness of this algorithm.

4.3.1. Properties Used for The Improvement

Lemma 3.

Suppose GS = (VS , E(VS)) is the densest subgraph of graph G, then we have

degVS
(i) ≥ ρ(VS) for any vertex i, where i ∈ VS.

Proof. We prove it by contradiction. Suppose there is at least one vertex i, where

i ∈ VS , and degVS
(i) < ρ(VS), then we delete vertex i from GS , and get graph

GS− = (VS\{i}, E(VS\i)). The density of graph GS− is:

ρ(VS\{i}) =
|E(VS\i)|
|VS\{i}|

=
ρ(VS)|VS | − degVS

(i)

|VS | − 1

Since degVS
(i) < ρ(VS), we have:

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

12

Algorithm 3: Improved algorithm for discovering GSDSs

1: Given: G = (V,E);

2: S ← V , Sp ← ∅, ρmax ← ρ(S);
3: while S 6= Sp do

Sp ← S;

Sc ← {i ∈ S|degS(i) ≤ ρmax};
S ← S\Sc;

if ρ(S) > ρmax then
ρmax ← ρ(S);

end

end
4: G0 = (S0, E(S0))← GS = (S,E(S));

5: Find densest subgraph G1 = (V1, E(V1)) of GS ;

6: Add G1 to Dlist;
7: V1

∗ ← V1 ∪ {j|(i, j) ∈ E(S), i ∈ V1};
8: G1

∗ = (V1
∗, E(V1

∗));
9: GS ← GS\G1

∗, i← 2;
10: while GS 6= ∅ do

Find Gi = (Vi, E(Vi));

// it is the densest subgraph of GS

Find GiL = (ViL, E(ViL));

// it is the LCDS of Vi of G0

Vi
∗ ← Vi ∪ {j|(i, j) ∈ E(S), i ∈ Vi};

Gi
∗ = (Vi

∗, E(Vi
∗));

GS ← GS\Gi
∗, i+ +;

if ρ(Vi) ≥ ρ(ViL) then
Add Gi to Dlist;

end

end
11: return Dlist;

ρ(VS\{i}) >
ρ(VS)(|VS | − 1)

|VS | − 1

> ρ(VS)

This contradicts with the precondition. Therefore, we have degVS
(i) ≥ ρ(VS) for

any vertex i, where i ∈ VS .

Theorem 7. After we delete all the vertices with degrees less or equal than the

maximum density of the remaining graph of G in block 3 of Algorithm 3 to obtain

GS, all the GSDSs of G are in GS.

Proof. We prove it by contradiction. Suppose there is one GSDS Gx = (Vx, E(Vx)),

where Gx 6⊂ GS , then there is a vertex subset I where I ⊂ Vx and I 6⊂ Vs. There is

a time in the deleting process that the first vertex i in I is deleted from the current

Vs (denoted by Vs
+). Therefore, we have:

ρ(Vx) ≤ degVx
(i)

≤ degVs
+ (i)

< ρ(Vs
+)

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

13

This implies that ρ(Vx) < ρ(Vs
+), and at this moment, we have Vx ⊂ Vs+. Hence,

from the definition of GSDS, we know that Gx is not a GSDS of G. This contradicts

with the assumption. Therefore, for any GSDS Gx of G, we have Vx ⊂ VS .

Based on Theorem 7, we design block 3 in Algorithm 3.

Theorem 8. Suppose G1 = (V1, E(V1)) and G2 = (V2, E(V2)) are two GSDSs of

graph G = (V,E), then there is no such an edge (v1, v2) in graph G, where v1 ∈ V1
and v2 ∈ V2.

Proof. We prove it by contradiction. Suppose there is at least one edge (v1, v2)

where v1 ∈ V1 and v2 ∈ V2, then we calculate the density ofG0 = (V1∪V2, E(V1∪V2))

as follows:

ρ(V1 ∪ V2) =
|E(V1 ∪ V2)|
|V1 ∪ V2|

≥
ρ(V1)|V1|+ ρ(V2)|V2|+ 1

|V1|+ |V2|

Suppose ρ(V1) ≥ ρ(V2), then we have:

ρ(V1 ∪ V2) >
ρ(V2)|V1|+ ρ(V2)|V2|

|V1|+ |V2|

=
ρ(V2)(|V1|+ |V2|)
|V1|+ |V2|

= ρ(V2)

Also, we know that V2 ⊂ V1 ∪ V2. Therefore, G2 is not a GSDS. This contradicts

with the precondition. Therefore, there is no such an edge (v1, v2) in graph G, where

v1 ∈ V1 and v2 ∈ V2.

Based on Theorem 8, we design block 10 of Algorithm 3.

Theorem 9. Suppose G∗ = (V ∗, E(V ∗)) is a subgraph of G = (V,E(V)) and

G1
∗ = (V1

∗, E(V1
∗)) is the densest subgraph of G∗, then there are no GSDSs of G

in G∗, if ρ(V1
∗) < ρ(V).

Proof. Since V ∗ ⊆ V and V1
∗ ⊆ V ∗, we have V1

∗ ⊆ V . Also, we know ρ(V1
∗) <

ρ(V). Also, by the definition of the GSDS, G1
∗ is not a GSDS of G. Based on

the definition of the densest subgraph, we know that, for any subgraph Gi
∗ =

(Vi
∗, E(Vi

∗)) in G∗, ρ(Vi
∗) < ρ(V1

∗) < ρ(V). Also, Vi
∗ ⊆ V . Hence, Gi

∗ is not a

GSDS of G. Therefore, there are no GSDSs of G in G∗.

Based on Theorem 9, we design the stop condition of the loop in block 10 of

Algorithm 3.

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

14

ID Description Domain

Dataset 1 [22] Collaboration network Social network

Dataset 2 [21] Facebook Social network

Dataset 3 [28] Power Grid Technology

Dataset 4 [17] Protein interaction Chemistry

Dataset 5 [15] E-mail interchanges Information

Dataset 6 [10] Metabolic network Biology

ID Description Domain

Dataset 7 [29] LiveJournal Social network

Dataset 8 [29] Orkut Social network

Datasets
of vertices # of edges size (KB)

Before After Before After Before After

Dataset 1 5,242 244 28,980 7,238 344 50

Dataset 2 9,877 599 25,998 8,264 644 59

Dataset 3 4,941 3,353 13,188 5,006 107 80

Dataset 4 1,846 624 4,406 1,121 34 15

Dataset 5 1,133 349 10,902 2,681 79 37

Dataset 6 453 66 2,066 301 14 4

Dataset 7 3,997,962 4,136 34,681,189 650,724 489,799 8,818

Dataset 8 3,072,44120,723117,185,0832,087,9321,728,293100,352

5. Performance Evaluation and Analysis of Massive Natural

Graphs

Recall that the precise algorithm [25] (denoted by LocPreAlg) that finds the densest

subgraph containing a specific vertex subset and the approximate algorithms [3, 6]

(denoted by GloAppxAlg1 and GloAppxAlg2) that find the densest subgraph ne-

glect the connectivity of the returned subgraphs. Although the previous precise

algorithm [14] (denoted by GloPreAlg) can guarantee the connectivity of the re-

turned subgraph, it is at the cost of high time and memory complexity. Also, no

previous work can find GSDSs. In this section, we conduct experiments to show the

effectiveness and efficiency of our proposed LSDS (Algorithm 1) and GSDS (Algo-

rithm 3) algorithms in solving these problems in comparison with these previous

algorithms. We also show the enhanced efficiency of our improved GSDS algorith-

m (Algorithm 3). We use two groups of massive datasets in Table 1 and Table 2

from different domains in our experiments. We use big datasets in Table 2 to test

the capacity of manipulating big data of Algorithm 3. The algorithms are imple-

mented by C language. The testing platform is one PC with 2.1GHz Intel core i3

processor with 2 cores, and a 4GB memory. The Operating System is Ubuntu 10.0.

In all the following figures, we use the results of our algorithms as a baseline and

shows the ratios of the results of other algorithms to our algorithms. Further, we

use Algorithm 3 to extract the GSDSs of the massive natural graphs from social

networks, technology, chemistry, and biology and conduct simple analysis to reveal

the physical significance of GSDSs in natural graphs from different domains.

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

15

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

P
e

rc
e

n
ta

g
e

 o
f

c
o

n
n

e
c
te

d
 s

u
b

g
ra

p
h

s

Dataset ID

Our algorithm LocPreAlg

(a) Discovering connected subgraphs

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

R
u

n
n

in
g

ti

m
e

Dataset ID

Our algorithm LocPreAlg

(b) The running time

Fig. 4. The performances of the LCDS algorithm compared to previous algorithms

5.1. Performance Evaluation of the LSDS Algorithm

We randomly select a specific vertex subset from each dataset, and then use Algo-

rithm 1 and LocPreAlg to find the LCDS of the selected vertex subset. Since both

algorithms are not suitable for large datasets, we conduct experiments on datasets

in Table 1. We repeated the experiment on each dataset for 100 times and calculated

the percentage of connected subgraphs in the 100 returned subgraphs.

Figure 4(a) shows ratio of the percentage of connected subgraphs in LocPreAlg

compared to Algorithm 1. For the previous algorithm, only 13% (for average) of the

outcomes are connected, while for Algorithm 1, 100% of the outcomes are connected.

We further analyze the 13% of the connected outcomes of the previous algorithm.

We find that it is connected just because the specific vertex subset only contains one

vertex, which is contained in the densest subgraph of the initial graph. For other

outcomes of LocPreAlg, they are disconnected in order to increase the density. This

results show that Algorithm 1 can guarantee the connectivity of the returned graphs

for the LCDS problem.

Since Algorithm 1 and LocPreAlg both require to store all the data into the

memory, the memory usages for both algorithms are same. Figure 4(b) shows the

ratio of the time used by LocPreAlg compared to Algorithm 1. We see that LocPre-

Alg is far more efficient than Algorithm 1. The reason is because that we apply a

simple min-cut algorithm [26] for solving the TCPM problem with time complexity

O(|V ||E|+ |V |2log|V |), while LocPreAlg applied a push relabeled algorithm [9] for

solving the min-cut max-flow problem with time complexity O(|V ||E|log(|V |2/|E|)).
This is the cost to guarantee the connectivity of the returned subgraphs. We will

improve the efficiency of Algorithm 1 in our future work.

5.2. Comparison of Basic and Improved GSDS Algorithms

We then show the effectiveness of Algorithm 3 compared to Algorithm 2. Recall that

Algorithm 3 removes unnecessary edges and vertices. Table 3 shows the comparisons

of the number of vertices, the number of edges, and the memory size of the datasets

before and after the reduction. In order to show the reduction performances clearly,

we draw Figures 5(a), (b) and (c) that show the ratio of the number of vertices,

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

16

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

#
 o

f
ve

rt
ic

e
s

Dataset ID

Initial size Size after reduction

(a) The number of vertices

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

#
 o

f
e

d
g

e
s

Dataset ID

Initial size Size after reduction

(b) The number of edges

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

M
e

o
m

o
ry

 s
iz

e

Dataset ID

Initial size Size after reduction

(c) The memory size

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

R
u

n
n

in
g

 t
im

e

Dataset ID

Initial time Time after reduction

(d) The running time

Fig. 5. The performance of the improved GSDS algorithm compared to the basic GSDS algorithm

the number of edges and the memory in Algorithm 3 compared to Algorithm 2.

From the table and figures, we see that the reduction in Algorithm 3 is significant.

Especially for the big dataset 7 and big dataset 8 which have a GB level data size,

the number of vertices and edges, and memory occupation are reduced to about

2% (for average) of the initial size, which makes it possible to run the polynomial

algorithm on one PC.

Figure 5(d) shows the percentage of running time of Algorithm 2 compared to

Algorithm 3. Unsurprisingly, the running time of Algorithm 3 is much faster than

Algorithm 2 since the data sizes after reduction are much smaller than the initial

sizes due to the significant size reduction in Algorithm 3. Since dataset 7 and dataset

8 are too large to be computed by Algorithm 2, we only estimate the results based

on the theoretical time complexity. We see the actual running time of Algorithm 3

are only 0.01% of the estimated running time of Algorithm 2.

5.3. Performance Evaluation of the Improved GSDS Algorithm

In this section, we compare the performance of discovering GSDSs between Algo-

rithm 3 and GloPreAlg, GloAppxAlg1 and GloAppxAlg2. First, we use Algorithm 3

to discover all the GSDSs. Then, we use GloPreAlg, GloAppxAlg1 and GloAppx-

Alg2 to find the same number of densest subgraphs by recursively running these

algorithms in the remaining graph. Then, we check whether these dense subgraphs

are connected or significant. We repeat 100 experiments on each dataset in Table 1.

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

17

0 0
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

P
e

rc
e

n
ta

g
e

 o
f

c
o

n
n

e
c
te

d

su
b

g
ra

p
h

s

Dataset ID

Our algorithm GloPreAlg GloApproxAlg1 GloApproxAlg2

(a) Discovering connected subgraphs

0 0 0 0 0 0 0 0
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

P
e

rc
e

n
ta

g
e

 o
f

si
g

n
if

ic
a

n
t

 s
u

b
g

ra
p

h
s

Dataset ID

Our algorithm GloPreAlg GloApproxAlg1 GloApproxAlg2

(b) Discovering significant subgraphs

0 0 0 0 0 0
0

5

10

15

1 2 3 4 5 6

M
e

m
o

ry
 s

iz
e

Dataset ID

Our algorithm GloPreAlg GloApproxAlg1 GloApproxAlg2

(c) The memory size

0

5

10

15

20

1 2 3 4 5 6

R
u

n
n

in
g

ti

m
e

Dataset ID

Our algorithm GloPreAlg GloApproxAlg1 GloApproxAlg2

(d) The running time

Fig. 6. The performance of the improved GSDS algorithm compared to previous algorithms

Figure 6(a) shows the percentage of connected subgraphs of GloAppxAlg1,

GloAppxAlg2 and GloPreAlg compared to Algorithm 3. We find that for GloAppxAl-

g1 and GloAppxAlg2, there are a lot of disconnected subgraphs in the results, while

for Algorithm 3, all the output subgraphs are connected. Also, we find GloAppxAlg1

performs a little better than GloAppxAlg2 since GloAppxAlg1 greedily searches the

densest subgraph by deleting the vertices one by one, while GloAppxAlg2 greedily

searches the densest subgraph by deleting the vertices batch by batch. GloPreAlg

does not have the connectivity problem since it is a precise algorithm. The results

confirm that GloAppxAlg1 and GloAppxAlg2 neglect the connectivity problem and

Algorithm 3 can solve it.

Figure 6(b) shows the percentage of significant subgraphs in GloAppxAlg1,

GloAppxAlg2 and GloPreAlg compared to Algorithm 3. We find that for GloAppx-

Alg1, GloAppxAlg2 and GloPreAlg, there are a lot of insignificant subgraphs in the

results, while for Algorithm 3, all the output subgraphs are significant. Also, similar

as the connectivity comparison results, we find GloAppxAlg1 performs a little better

than GloAppxAlg2. Although GloPreAlg is a precise algorithm and does not have

the connectivity problem, it still cannot guarantee that its discovered subgraphs

are significant. The results confirm that GloAppxAlg1, GloAppxAlg2 and GloPreAl-

g cannot guarantee that the discovered subgraphs are significant and Algorithm 3

can solve it.

Figure 6(c) shows the ratios of memory sizes of GloAppxAlg1, GloAppxAlg2 and

GloPreAlg compared to Algorithm 3. We see that Algorithm 3 needs much small-

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

18

Fig. 7. Example of task 1 Fig. 8. Example of task 2
er memory size than GloPreAlg and GloAppxAlg1 since it significantly reduces the

data size. GloAppxAlg2 almost does not need any memory since it is a streaming al-

gorithm. Figure 6(d) shows the ratio of running time of GloAppxAlg1, GloAppxAlg2

and GloPreAlg compared to Algorithm 3. Algorithm 3 is much faster than GloPre-

Alg, while GloAppxAlg1 and GloAppxAlg2 are much faster than Algorithm 3. This

is because Algorithm 3 is precise algorithm but GloAppxAlg1 and GloAppxAlg2

are approximate algorithms applying a greedy strategy. Although GloAppxAlg1 is

more time efficient and GloAppxAlg2 is both more time and memory efficient than

Algorithm 3, both the algorithms cannot guarantee that the returned subgraphs

are connected and significant as shown previously. Algorithm 3 can handle these

problems with the capability of handling big data.

6. Applications and comparison with the general community

detection algorithm

There are many works which study the community detection. For example, Newman

proposed a community detection algorithm which has good performances on many

datasets. An improved version of this algorithm can be used for large natural graphs.

However, all these algorithms are proposed to detect general communities in graphs.

However, when it comes to the real applications of data mining, advertisement

recommendation and so on, the function of detecting general communities in graphs

cannot satisfy their demands.

In order to prove that our algorithms have better performances than general

community detection algorithm on different applications, in this section, firstly, we

propose two data mining tasks which are important in the real applications. Then,

we apply our local and global densest subgraph discovering algorithm on the two

data mining tasks, respectively. At the same time, we compare the performances of

our algorithms with the general community detection algorithm [].

6.1. Specific Community Mining on the Natural Graphs

6.1.1. Task description

The task of the first application is mining the significant subgraphs from natural

graphs. The task of the second application is to find a specific node’s community

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

19

by local densest subgraph discovering algorithm.

For example as shown in Figure 7, this is a social network. Usually we hope to

find all the communities. However, suppose there is a person Mary. Now, in order to

recommend Mary with advertisements which she may be interested in, we hope to

find the community Mary is in. Then, based on information of Mary’s community,

we can have a deeper understanding of Mary’s interests.

In this task, we select Dataset 1 as our test dataset and randomly generate a

specific node 50 times. In each time, we try to find the community which includes

the specific node by LCDS algorithm and general community detection algorithm

separately. For our algorithms, we can directly choose local densest subgraph dis-

covering algorithm to find Mary’s community. For the general community detection

algorithm, we have to follow the following steps to find Mary’s community since the

general community detection algorithm is not designed directly for such a task:

(1) There are many factors which can influence the performances of different rout-

ing methods. It’s impossible for us to design corresponding strategy for each

of them. Furthermore, even if we can list as many as factors and design corre-

sponding strategy for each of them, it still will not be the best way since the

situation for each vehicle pair is a combination of different factors.

Finally we compare the performances of LCDS algorithm and general community

detection algorithm by the density of the communities found and the time efficiency

of the algorithms.

6.1.2. Result and analysis

First, we compare the density of the community we find by LCDS algorithm and

general community detection algorithm as shown in Figure 7. From Figure 7, we

can see that since LCDS algorithm is designed to find the densest community which

includes the specific node and ignores the rest of the graph, LCDS algorithm can

always find a denser community which includes the specific node than general com-

munity detection algorithm. On the contrary, general community detection algo-

rithm focuses on all the communities at the same time and lack the capability to

pay more attention to a community which includes a specific node. Then, we com-

pare the time efficiency of the two algorithms as shown in Figure 7. From Figure 7,

we can see that since we reduced most of the nodes in the reduction process, our

algorithm can be much faster than the general community detection algorithm.

6.1.3. Motivation to apply LCDS algorithm

From the simple analysis above, we find that the LCDS problem is different from

traditional community detecting in that LCDS algorithm focuses on the specific

part of the graph which is defined based on the real demands and therefore, can

perform better than general community detection algorithm on finding a particular

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

20

community. On the contrary, the traditional community detecting methods [14,24,

27] (e.g. modularity) return all the subgraphs and lack the capacity to purify the

significant parts. Therefore, GSDS can be treated as a good complement in real

applications when there is a desire to focus on the core parts of the graph. For

example, we can apply GSDS to detect important academic circles in a research

field, major metropolitan areas of a country, important functional module groups

in a protein interaction network and so on.

6.2. Significant Subgraph Mining on the Natural Graphs

6.2.1. Task description

Instead of focusing on every trivial detail of the graph, in reality, we only want to

focus on the important parts of the graph and study the features of the important

parts when we study the graph from a macro-scope. The trivial parts of the graph

may only bring the noise into the analysis. For example as shown in Figure 8, we

only focus on the two completed connected subgraphs in the graph since the graph

mainly consists of two completed connected subgraphs and the rest parts are trivial.

Therefore, in this section, our task is mining the important parts of natural

graphs and analyze their physical significance of Datasets 1 to 6.

6.2.2. Result and analysis

Table 4 shows the actual number of GSDSs discovered by our algorithm. Datasets

1 and 2 are paper collaboration networks from the categories of gr-qc and hep-th

in ArXiv, respectively. For the papers in each category, they have sub-categories.

Table 5 shows the top-10 most frequent sub-categories of 1000 randomly selected

papers in each of the categories gr-qc and hep-th, which correspond to datasets 1

and 2, respectively. We find that the number of GSDSs in datasets 1 and 2 can

precisely reflect the number of the most frequent sub-categories (emphasized with

bold type) of their corresponding categories. Dataset 3 is the power grid network of

western states. Interestingly, there are just 31 major metropolitan areas in western

states [5], which is very close to the number of GSDSs (28) in dataset 3. The

protein network in dataset 4 has 13 GSDSs, while there should be hundreds of

functional modules in the network [8]. The massive functional modules are highly

clustered into several GSDSs separately. We are interested in the reasons behind

such a clustering of functional modules to different GSDSs. The email network

(dataset 5) from University Rovira i Virgili and metabolic network (dataset 6) from

C.elegans both only have 1 GSDS, while there are 13 and 10 modularities [10] in

each of the datasets, respectively. which means they are highly centralized to single

important circle (e.g. a university or a simple organism).

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

21

ID # of GSDS # of modularities ID # of GSDS # of modularities

Dataset 1 3 17 Dataset 4 13 38

Dataset 2 4 24 Dataset 5 1 13

Dataset 3 28 54 Dataset 6 1 10

Dataset 1 Dataset 2

Sub-category Frequency Sub-category Frequency

hep-th 327 hep-ph 184

astro-ph 304 gr-qc 167

math-ph 175 math-ph 91

quant-ph 31 astro-ph 85

cond-mat 28 hep-lat 39

physics.atom-ph 27 math.DG 35

stat-mech 11 nlin.SI 21

nucl-th 7 nucl-th 19

6.2.3. Motivation to apply GSDS algorithm

From the simple analysis above, we find that the GSDS problem is different from

traditional community detecting in that GSDS problem naturally ignore the unim-

portant parts and focus on the important parts of the graph (while the concepts

of important parts may depend on the specific knowledge from the corresponding

domains). On the contrary, the traditional community detecting methods [14,24,27]

(e.g. modularity) return all the subgraphs and lack the capacity to purify the sig-

nificant parts. Therefore, GSDS can be treated as a good complement in real appli-

cations when there is a desire to focus on the core parts of the graph. For example,

we can apply GSDS to detect important academic circles in a research field, major

metropolitan areas of a country, important functional module groups in a protein

interaction network and so on.

7. Related Work

The densest subgraph problem was first formally introduced by Goldberg [14]. He

gave an algorithm that requires O(log n) running time (n is the number of vertexes

in the graph) to find the optimal solution by reducing the problem to a series

of min-cut max-flow computations. Later on, different subproblems of the dense

subgraph problem were proposed. Feige et al. [11] defined and studied the densest

k-subgraph problem, which is to find a subgraph with the maximum density among

subgraphs containing k vertices. Asahiro et al. [2] defined and studied the problem

of discovering a k-vertex subgraph of a given graph G that has at least f(k) edges.

Saha et al. [25] defined the densest subgraph problems with a distance restriction

or a specific subset restriction, and provided algorithms for these subproblems.

However, this work neglects the connectivity of the returned graphs.

Various approximate and heuristic algorithms have been proposed to improve

the time and space complexity of the initial algorithms for big data. Charikar [6] pre-

sented a simple greedy algorithm that leads to a 2-approximation to the optimum.

This algorithm was improved by Bahmani et al. [3] in a MapReduce framework,

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

22

which can lead to a 2(1 + ε)-approximation of the optimum. The most importan-

t problem in these previous algorithms [3, 6] is that they neglect the connectivity

of the returned densest subgraph. Some heuristic algorithms [7, 13] for discovering

dense subgraphs were also proposed based on different techniques such as shingling

and matrix blocking.

The applications of dense subgraph problem are accompanied by theoretical

works. Kumar et al. [20] proposed an approach to identify web page communities

in the Internet based on dense subgraphs. Gibson et al. [13] applied the solution

for discovering dense subgraphs problem to detect the link spam in World Wide

Web. These works use a threshold to determine the returned subgraphs. These

algorithms also neglect the connectivity problem of the detected subgraphs. Also,

there are no previous works that find all dense subgraphs which do not contain

denser subgraphs or are contained in denser subgraphs, which however are needed

in many applications.

In addition to the neglect of the connectivity, there has been no previous works

that find all significant dense subgraphs. Compared to previous works, our study

of dense subgraphs is novel in that i) we define two new subproblems of the dense

subgraph problem, which consider the connectivity of the outputs, and find all

significant dense subgraphs, and ii) our algorithms can be easily applied for handling

GB-level natural graphs with no approximations in one PC with high time and

memory efficiency.

8. Conclusion

In this paper, we revealed two problems existing in previous studies, which are im-

portant in various applications in different domains. One problem is the neglect of

the connectivity of returned subgraphs in previous approximate and precise algo-

rithms for finding the densest subgraph without and with the restriction of contain-

ing a vertex subset, respectively. The other problem is the lack of an algorithm for

finding multiple connected and significant dense subgraphs. To handle these prob-

lems, we defined two subproblems of discovering dense subgraphs: the LCDS and

GSDS problems, and proposed algorithms to solve the problems in polynomial time.

Also, based on the feature of natural graphs, we provided an improved algorithm

to reduce the time and space complexity of the basic GSDS algorithm, which can

easily handle data with GB-level size in one PC. In the experiments, we applied our

algorithms on massive natural graphs, evaluated the efficiencies of our algorithms in

comparison with previous algorithms, and analyzed the structure of these natural

graphs. The experimental results showed the high effectiveness and efficiency of our

algorithms in solving the problems. In the future, we will focus on improving the

time complexity of the algorithms. Also, we will find more evidences to reveal the

physical significance of GSDSs in natural graphs from different domains.

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

23

References

1. Xin Ai, Vikram Srinivasan, and Chen-Khong Tham. Wi-sh: A simple, robust credit
based wi-fi community network. In Proc. of INFOCOM, 2009.

2. Yuichi Asahiro, Refael Hassin, and Kazuo Iwama. Complexity of finding dense sub-
graphs. Discrete Applied Mathematics, 2002.

3. Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. Densest Subgraph in Stream-
ing and MapReduce. PVLDB, 2012.

4. A. L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
1999.

5. United States Census Bureau. Annual estimates of the population of metropolitan
and micropolitan statistical areas. 2011 Population Estimates, 2012.

6. Moses Charikar. Greedy approximation algorithms for finding dense components in a
graph. APPROX, 2000.

7. Jie Chen and Yousef Saad. Dense subgraph extraction with application to community
detection. IEEE Trans. Knowl. Data Eng., 2012.

8. Jingchun Chen and Bo Yuan. Detecting functional modules in the yeast protein-
protein interaction network. Bioinformatics, 2006.

9. Boris V. Cherkassky and Andrew V. Goldberg. On implementing the push-relabel
method for the maximum flow problem. Algorithmica, 1997.

10. J. Duch and A. Arenas. Community detection in complex networks using extremal
optimization. Physical Review E, 2005.

11. Uriel Feige, Guy Kortsarz, and David Peleg. The dense k-subgraph problem. Algorith-
mica, 2001.

12. Gary William Flake, Steve Lawrence, and C. Lee Giles. Efficient identification of web
communities. In Proc. of KDD. 2000.

13. David Gibson, Ravi Kumar, and Andrew Tomkins. Pregel: a system for large-scale
graph processing. In Proc. of VLDB, 2005.

14. A. V. Goldberg. Finding a maximum subgraph. Technical Report, 1984.
15. R. Guimer, L. Danon, A. Daz-Guilera, F. Giralt, and A. Arenas. Self-similar commu-

nity structure in a network of human interactions. Physical Review E, 2003.
16. Cunqing Hua and Rong Zheng. Starvation modeling and identification in dense 802.11

wireless community networks. In Proc. of INFOCOM, 2008.
17. H. Jeong, S.P. Mason, A.L. Barabasi, and Z.N. Oltvai. Lethality and centrality in

protein networks. Nature, 2001.
18. David R. Karger and Clifford Stein. A new approach to the minimum cut problem. J.

ACM, 1996.
19. Samir. Khuller and Barna Saha. On finding dense subgraphs. ICALP, 2009.
20. Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins.

Trawling the web for emerging cyber-communities. In Proc. of WWW, 1999.
21. Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: Densification

laws, shrinking diameters and possible explanations. In Proc. of KDD, 2005.
22. Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graph evolution: Densifi-

cation and shrinking diameters. TKDD, 2007.
23. S. Thomas McCormick, M. Rammohan Rao, and Giovanni Rinaldi. Easy and difficult

objective functions for max cut. Mathematical Programming, 2003.
24. M. E. J. Newman and M. Girvan. Finding and evaluating community structure in

networks. Physical Review E, 2004.
25. Barna Saha, Allison Hoch, Samir Khuller, Louiqa Raschid, and Xiao-Ning Zhang.

Dense subgraphs with restrictions and applications to gene annotation graphs. In
Proc. of RECOMB, 2010.

November 5, 2015 14:54 WSPC/INSTRUCTION FILE densestsubgraph2

24

26. Mechthild Stoer and Frank Wagner. A simple min cut algorithm. ESA, 1994.
27. Li Wan, Bin Wu, Nan Du, Qi Ye, and Ping Chen. A new algorithm for enumerating

all maximal cliques in complex network. In ADMA, 2006.
28. D.J. Watts and S.H. Strogatz. Collective dynamics of ’small-world’ networks. Nature,

1998.
29. Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based

on ground-truth. CoRR, 2012.

